Applied Physics Lab

Course Code	19BS1252	Year	Ι	Semester	II
Course Category	Basic Sciences	Branch	ME	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisites	Nil
Continuous Internal Evaluation:	25	Semester End Evaluation:	50	Total Marks:	75

Course Outcomes					
Upon s	Upon successful completion of the course, the student will be able to				
CO1	Determine the rigidity modulus, Poisson's ratio of a material and coefficient of				
	damping, quality factor for an oscillator.				
CO2	Demonstrate elastic limit and stress-strain relationship using Hooke's law				
CO3	Calculate thermal conductivity of bad and good conductors.				
CO4	Apply resonance to estimate the frequency of a tuning fork and examine the relation				
	between frequency and volume of a cavity.				
CO5	Identify the type of semiconductor and evaluate the acceptance angle, numerical				
	aperture an optical fiber.				

Contribution of Course Outcomes towards achievement of Program Outcomes &														
	Strength of correlations (H:High, M: Medium, L:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н		Н										Н	
CO2	Η		Н										Н	
CO3	Н		Н										Н	
CO4	Η		Н										Н	
CO5	Η		Н										Η	

Syllabus				
Unit	it Contents			
No.		CO		
Ι	To Determine The Rigidity Modulus Of Material Of A Wire-Dynamic			
	Method (Torsional Pendulum).	CO1		
II	To Determine The Poisson's Ratio Of Rubber Experiment			
III	To Investigate Hooke's Law	CO2		
IV	To Determine The Thermal Conductivity Of A Bad Conductor By Lee's	CO3		
	Disc Method	005		
V	To Study Of Resonance In A LCR Circuit.			
VI	To Verify The Relation Between Volume Of The Air In The Resonator			
	And Frequency Of Note.	CO4		
VII	To Determine The Resonance Frequency Using Sonameter	04		
VIII	To Determine The Frequency Of Electrically Maintained Tuning Fork By			
	Melde's Method.			
IX	To Determine The Hall Coefficient Using Hall Effect Experiment.			
X	To Determine The Numerical Aperture Of A Given Optical Fibre And	CO5		
	Hence To Find Its Acceptance Angle.			

Learning Resources
Text Books
RamaraoSri, Choudary Nityanand and Prasad Daruka, "Lab Manual of Engineering
Physics"., Vth ed., Excell Books, 2010
Reference Books
PrithwirajPurkait, BudhadityaBiswas and ChiranjibKoley, Chapter 11 Sensors and
Transducers, Electrical and Electronics Measurements and Instrumentation, 1/e., 2013
McGraw Hill Education (India) Private Limited, 2013.
e- Resources & other digital material
http://www.physicsclassroom.com/The-Laboratory